3. Pathway Enrichment Analysis¶
- Extracting Biological Insights from top important features of subtypes
In [1]:
from IPython.display import display, Image
Image("../img/cellular_molecular_processes.png", width=800)
Out[1]:
In [2]:
from reactome_api import identifiers, token
import json
import pandas as pd
In [3]:
input_filename = "../data/selected_features_by_subtype.json"
with open(input_filename, "r") as f:
selected_features = json.load(f)
subtype_of_interest = 'Basal'
_ids = ",".join(selected_features[subtype_of_interest]) # comma seperated list of gene features in string...
result = identifiers(ids=_ids, interactors=False, page_size='1', page='1', species='Homo Sapiens',
sort_by='ENTITIES_FDR', order='ASC', resource='TOTAL', p_value='0.05', include_disease=True,
min_entities=None, max_entities=None, projection=False)
_token = result['summary']['token']
token_result = token(_token, species='Homo sapiens', page_size='-1', page='-1', sort_by='ENTITIES_FDR',
order='ASC', resource='TOTAL', p_value='0.05', include_disease=False,
min_entities=None, max_entities=None)
enrichment_analysis = [p for p in token_result['pathways']]
_names = [(e['name'], e['entities']['pValue'], e['entities']['total'], e['entities']['found']) for e in enrichment_analysis]
df = pd.DataFrame(_names, columns=['Pathway name', 'pValue', 'total', 'found'])
df = df.sort_values(by='pValue', ascending=True)
print("\nTCGA-BRCA Basal subtype features pathway enrichment analysis: \n\n", df)
x = Image("../img/PathwaysOverview.png")
y = Image("../img/Reacfoam.jpg")
display(x, y)
TCGA-BRCA Basal subtype features pathway enrichment analysis: Pathway name pValue total found 0 APC-Cdc20 mediated degradation of Nek2A 0.000342 26 4 1 Inactivation of APC/C via direct inhibition of... 0.002409 21 3 2 Inhibition of the proteolytic activity of APC/... 0.002409 21 3 3 APC:Cdc20 mediated degradation of cell cycle p... 0.007419 61 4 4 APC/C:Cdc20 mediated degradation of mitotic pr... 0.008282 63 4 5 Activation of APC/C and APC/C:Cdc20 mediated d... 0.008737 64 4 6 TP53 Regulates Transcription of Cell Cycle Genes 0.009208 65 4 7 NEIL3-mediated resolution of ICLs 0.012352 1 1 8 RUNX2 regulates genes involved in cell migration 0.013438 14 2 10 APC/C-mediated degradation of cell cycle proteins 0.017597 79 4 9 Regulation of mitotic cell cycle 0.017597 79 4 11 Phosphorylation of the APC/C 0.026129 20 2 12 TP53 Regulates Transcription of Genes Involved... 0.026129 20 2 13 TP53 Regulates Transcription of Genes Involved... 0.028577 21 2 14 Conversion from APC/C:Cdc20 to APC/C:Cdh1 in l... 0.031113 22 2 15 APC/C:Cdc20 mediated degradation of Cyclin B 0.036438 24 2 17 Chondroitin sulfate biosynthesis 0.039223 25 2 16 Cdc20:Phospho-APC/C mediated degradation of Cy... 0.039623 60 3 18 Regulation of MITF-M-dependent genes involved ... 0.048037 28 2
In [ ]:
In [ ]: